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Abstract This paper considers the steady-state plasma drug con- 
centration in a one-compartment, open pharmacokinetic model with 
multiple doses and first-order kinetics using a classical deterministic 
technique as well as a queueing theoretical stochastic analysis. The sto- 
chastic analysis employs a new method for obtaining the steady-state 
probability distribution of the content of a dam with compound Poisson 
input and a general release rule. It is shown that  if the deterministic 
steady-state average concentration exists, i t  is equal to the mean value 
of the steady-state concentration, the probability distribution of which 
is obtained using the stochastic model. Moreover, the steady-state 
probability distribution of the concentration and its mean always exist 
in the stochastic model. Ramifications of the stochastic method of 
analysis are discussed. 

Keyphrases Pharmacokinetics-steady-state plasma drug concen- 
tration, queueing theory 0 Models, pharmacokinetic-steady-state 
plasma drug concentration, queueing theory 0 Queueing theory-ap- 
plication to pharmacokinetics, steady-state plasma drug concentra- 
tion 

This paper introduces a method of analyzing drug ac- 
cumulation based on a stochastic model of multiple-dosing 
regimens. In classical pharmacokinetic theory, transient 
and steady-state drug concentrations in the blood for 
multiple-dosing regimens are derived from knowledge of 
the deterministic dose sizes, intervals between doses, 
volumes of distribution, and kinetics of elimination and 
transfer between body compartments (1-4). This analysis 
may be clinically useful only if two major conditions are 
true: ( a )  the dosage intervals are known, and ( b )  the 
amount of drug absorbed as a consequence of each dose is 
known. 

These conditions rarely are met in practice. As noted 
previously (2), nonstandard definitions of bid, t id ,  and qid 
may lead to varying dosage intervals. Family physicians 
and drug package inserts often direct that drugs should be 
taken near meal times, bed time, or three or four times 
daily without defining these terms specifically (2). Patients 
rarely take drugs on schedule unless they are in the hos- 
pital. Furthermore, dose size may vary because the initial 
dose or other doses may be different from the usual 
maintenance dose. The fractional absorption of oral drugs 
depends on several factors. For drugs administered in- 
tramuscularly, the fractional absorption partially depends 
on the injection site (1). Moreover, completeness of drug 
absorption always is clinically important (1,5). 

These observations suggest the desirability of obtaining 
the drug concentration in the plasma when the dose in- 
tervals, doses, o r  absorption fractions are subject to ran- 
dom fluctuations and must be considered random vari- 

ables. Accounting for such random variations in these 
parameters leads to the consideration of a stochastic 
analysis of pharmacokinetic models. This paper empha- 
sizes the new technique itself rather than its application 
to general multiple-dosing models. The model presented 
is a one-compartment, open model with instantaneous 
input and first-order elimination. A classical, well-known 
deterministic method of analysis is presented for conve- 
nience of reference, and a stochastic, queueing theoretical 
approach for studying the same model then is given. The 
latter technique is based on a new method of analyzing the 
model of a dam with a general release rule', which was 
studied previously in stochastic processes using other 
approaches. 

THEORETICAL 

The Model-The model treated is a one-compartment, open model 
with multiple dosing and first-order kinetics (1-4,6). For clarity and to 
focus attention on the new technique, very rapid administration of each 
dose directly into and instantaneous distribution throughout the com- 
partment is assumed. This assumption is a good approximation for in- 
travenous bolus dosing. For outpatient oral dosing (to which the sto- 
chastic technique is more applicable), first-order absorption may be a 
more appropriate assumption. However, for many drugs in common 
clinical use, the absorption constant is appreciably larger than the 
elimination constant. Examples are digoxin, sublingually administered 
nitrites, salicylates, and phenylbutazone. For such drugs, the assumption 
of instantaneous absorption, although only approximate, is not entirely 
unreasonable. 

The following notations are used in both the deterministic and sto- 
chastic analyses: 

V = volume of compartment 
K ,  = elimination rate constant (time-') 

T, = administration time of nth dose, n = 1.2.3,. . . ; T I  = 0 
T ,  = nth dosage interval; T, = T,+I- T, 
D, = amount of nth dose 
F, = fraction of D, distributed throughout V 
En = effective increase in drug concentration a t  time 7,; En = 

t l / z e  = elimination half-life; l l k ,  = tl/ze/ln 2 = 1.44t1/ze 

FnDn/V 
C ( t )  = drug concentration a t  time t ;  t ? 0 

X = rate of administration of doses 
B = common distribution function of effective increases in 

r ( x )  = drug elimination rate when the concentration is x (mass 

Deterministic Analysis-The following well-known deterministic 
analysis is presented for comparison with the stochastic analysis. Vari- 

C,  = drug concentration a t  time T,; C1 = C(0) = 0 

concentration, En, independent of n; B(0)  = 0 

times volume-1 times time-') 

P. H. Brill, unpublished data. 
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ations and generalizations of this analysis were given previously ( 1 4 6 ) .  
Equations 1-9 in the present discussion parallel formulas presented 
previously. All of the parameters are considered deterministic so that T,, 
D,, F,, En, and C ,  are real nonnegative constants for n = 1,2,3, .  . . . The 
deterministic differential equations of elimination are: 

-= dC(t) -K,C(t) 7,  < t 5 7,+1 
dt 

(Eq. 1) 

with initial conditions C ( T : )  = C, + En, n = 1,2,3,. . . (3). It then follows 
that: 

C ( t )  = ( C ,  + E n )  exp [ - K e ( t  - ~ n ) ]  

7 ,  < t 5 T,+I, t~ = 1,2 ,3 , .  . . (Eq. 2) 

and thus: 

Cn+i = C ( 7 n + l )  = (C,  +En) exp (-KeT,) (Eq. 3) 

Three sequences are of interest in pharmacokinetics: minimum (or infi- 
mum), maximum (or supremum), and average concentrations during each 
dosage interval, which are C,, C ,  +En,  and c,, = (l /Tn) -I-;:$: C(t) dt ,  
respectively. Consideration of general constraints on the parameters En 
and T, that are necessary and sufficient for the convergence of these 
sequences to limiting values is outside the scope of this paper. However, 
a sufficient (but not necessary) condition for any of these sequences to 
converge is monotonicity (ie., always increasing or always decreasing) 
after some finite value of n.  For different dosing regimens, the limits of 
all three. anv two. onlv one. or none of these seauences may exist. In the 

R = 1 , 2 , 3 , .  . . 

remainder o? this'seciion, all limits are taken as n--.  
If lim C ,  exists, Eq. 3 yields: 

lim C ,  = lim &/[exp(KeT,) - 11) 
If lirn ( C ,  + En) exists, Eq. 3 yields: 

lim (C, + En) = lim(E,+1/[1- exp(-K,T,)]) 

Using Eq. 2 and substituting from Eq. 3 result in: 
- 
C n  = (l/Tn) J'"" C ( t )  dt = (l/Ke)(Cn + E n  - Cn+I)/Tn 

t=r. 

and, hence, if lim c,, exists: 

lim Cn = (l/Ke) lim [(c, + E, - c ,+~) /T , ]  

With the assumption that lirn c,, and lim C ,  exist, it follows from Eq. 66 
that: 

lim c, = (l/Ke) lim (E,/T,) = (l/Ke) lim (F,Dn/Tn) (Eq. 7) 

If both lim en and lim ( C ,  + E n )  exist, then: 

lim Cn = (l/Ke) lim (En+1/Tn) = (l/Ke) lim (Fn+1 Dn+dTn) 
(Es. 8) 

In Eqs. 4-8, En and T, must be known to predict whether the se- 
quences will converge or oscillate. Knowledge of these parameters rarely 
is obtainable, except possibly in controlled hospital situations or labo- 
ratory studies. In pharmacokinetic literature, analytical results for these 
limits usually are derived by assuming uniform dosing, i.e., F, = F, D, 
= D, and T,  = T, so that the En values all are equal. The condition of 
uniform dosing is sufficient but not necessary for the limits in Eqs. 4-8 
to exist. Under uniform dosing, the steady-state average concentration 
is given by: 

lim c,, = 1.44t1/zeE/T = l.44t1/zeFD/(VT) (Eq. 9) 
Since actual dosing rarely is uniform in ambulatory patients, even when 

it is the intended therapy, nonuniform dosing must be considered. A 
generalization of Eq. 9 holds for nonuniform dosing of the following type. 
Both lirn C ,  and lim cn are assumed to exist, so Eq. 7 holds. In addition, 
let the average increase in drug concentration per dose after n intervals, 
which is given by (8:.1Ei)/n (or equivalently by Z$lFiDiln),  and the 
average dose interval after n intervals, (ZEITi ) ln ,  tend to the limits E' 
[=(FD)'] and T', respectively, as n - a .  Then, with Eq. 7 and the fact that 
both En and T, are bounded away from zero and also bounded above, 
the following is obtained: 

lim C,, = (l /Ke) lim (E,/T,) (Eq. 10a) 

lim C,, = (l/K,)E'/T' (Eq. lob) 

lim c, = 1.44t1/zeE'/T' (Eq. 1Oc) 

lim C,, = 1.44t1/ze(FD)'/T' (Eq. 10d) 

The introduction of this type of nonuniform dosing model serves a dual 
purpose. First, it leads to Eqs. 1Oc and 10d, which demonstrate that the 
limiting average concentration depends on the effective increases in 
concentration and the dose intervals only through their respective lim- 
iting average values. Second, it links the deterministic models of this 
section to the stochastic model. The latter model also possesses the 
property established in Eqs. 1Oc and 10d. 

Stochastic Analysis-In this section, a completely different method 
for analyzing the present model is introduced. The parameters T,, D,, 
and F,, n = 1,2 , .  . . , are considered to be sequences of independently, 
identically distributed, random variables, so that En = FnDn/V is a 
random variable. Hence, IC,, n 1 1) and { C ( t ) ,  t I 0) are stochastic pro- 
cesses. 

Furthermore, it is assumed that ( N ( t ) ,  t L 01 is a Poisson process with 
arrival rate A, where N ( t )  denotes the number of doses in the time interval 
[0, t ] .  Note that P [ N ( t )  = k ]  = [e-At(Xt)k]/k!, k = 0,1,2,. . . . Thus, IT,, 
n 2 1) is a sequence of exponentially distributed random variables with 
the common probability distribution function 1 - exp (- AX), x ? 0. The 
sequence (En, n 2 1) is assumed to have common probability distribution, 
B ,  with B(0)  = 0. The mean value of the random variable with distribu- 
tion B is denoted by E" = JY-0 z dB(z). The drug elimination is described 
by a general release function, r ,  with r(c) > 0 for c > 0 and r(0) = 0, where 
c denotes the concentration level. Therefore, the pharmacokinetic system 
previously modeled deterministically is modeled stochastically as a dam 
with a general release rule' (7-9). Hence, in general, the following analysis 
is not constrained to first-order kinetics of elimination. Sample functions 
of the process ( C ( t ) ,  t 2 0) satisfy the differential equations: 

dC(t)/dt = -r[C(t)] 7,  < t I T n + 1  (Eq. 11) 

with initial conditions C(T:) = C, + En, n = 1,2 ,3 , .  . . . 
The relation lime-- r(c) > X JtzB(dz) = XE" guarantees the existence 

of the steady-state probability distribution function of the drug con- 
centration (8). This result implies, as will be seen following Eq. 15, that 
for first-order kinetics the steady-state concentration, its probability 
distribution, and its average always exist. This probability distribution 
function is denoted by G having the probability density function g. An 
equation for G that is well known in the literature of stochastic processes 
(7-9) now is derived by a new method'. The present investigators believe 
that this method has strong intuitive appeal as well as other desirable 
properties that are outside the scope of this paper. This method differs 
from one given previously (9), which counts crossings of levels during 
regenerative cycles of the process rather than during time intervals of 
the form (0, t], as is done here. Let E[Dt(c)] and E [ U t ( c ) ]  denote the 
expected values of the number of times that a sample function of the 
process { C ( t ) ,  t I 0) downcrosses and upcrosses level c ,  respectively, 
during time interval (0, t ] .  The theorems given previously' state that: 

lim E[Dt(c)]/t = r ( c ) g ( c )  c > 0 (Eq. 12) 
t-- 

and: 

lirn E[Ut (c ) ] / t  = X B(c - z)G(dz) (Eq. 13) 

where B(x) = 1 - B ( x ) ,  x I 0. Since the number of downcrossings and 
upcrossings cannot differ by more than one during any time interval, it 
follows that the right sides of Eqs. 12 and 13 must be equal, so that' Eq. 
14 holds: 

t - -  K O  

This relation is the well-known equation in stochastic processes referred 
to previously (7-9). Up to this point, the release function, r ,  has not been 
specified so that Eq. 14 holds for non-first-order kinetics of elimination. 
A t  this stage, Eq. 14 is specialized to first-order kinetics of elimination 
by assuming that: 

r ( c )  = K,c c 2 0 (Eq. 15) 

Notice that lime-- K, c = m, which is greater than XE" since E" is 
finite. Therefore, with first-order elimination, the limiting probability 
distribution and its average always exist (8). This property of the sto- 
chastic model obviates the need to consider the convergence properties 
of the sequences in Eqs. 4-8. The actual observed increases in concen- 
tration per dose and actual observed dosage intervals encountered in any 
particular therapy will vary in accordance with sampling from distribu- 
tion B and from an exponential distribution, respectively. Due to the law 
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of large numbers, their averages will tend to E” and 1/X, respectively, as 
the number of doses increases. Therefore, this model is the stochastic 
analog of a deterministic model with the type of nonuniform dosing 
considered preceding Eq. 10a. Thus, the stochastic model does not as- 
sume that the intended therapy must involve uniform dosing, but it also 
applies if the intended therapy actually happens to comprise uniform 
dosing. This result follows since uniform dosing is just a special type of 
deterministic nonuniform dosing considered following Eq. 9. To apply 
the stochastic model for drug management in a given therapy, it must 
be established that there is a known probability distribution, B, and that 
the number of doses in any time interval has a Poisson distribution. 

K d c )  = A l f o B  (c  - z ) g ( z )  dz (Eq. 16) 

whose tractability without using integral transforms depends on the 
nature of the function B. Even if Eq. 16 is not readily solvable for g, the 
steady-state mean value of the concentration with probability density 
g can be found immediately by integrating both sides of Eq. 16 with re- 
spect to the variable c over the range (0, m ) .  This integration leads to: 

c = A E ” / K ,  = 1.44tl/peE“A (Eq. 17) 

where c is the mean value of the steady-state probability distribution 
of the drug concentration. If D, and F,  are completely independent se- 
quences of random variables, then E” = F”D”/V, where F” and D” are 
the mean fractional absorption and mean dosage, respectively. In this 
case, setting A = l/T” transforms Eq. 17 into: 

With Eq. 15, Eq. 14 reduces to: 

c = 1.44t1/2eF”D”/(V‘f”) (Eq. 18) 

Com arison of F4s. 9,10cLand 10d with Eqs. 17 and 18 demonstrates that 
lim 6 = c, provided lim C, exists. A complete solution of Eq. 16 is given 
when the effective increases in concentration a t  dose times are expo- 
nentially distributed with the mean 1/p, i .e.,  B ( x )  = 1 - exp ( - ~ x ) ,  x > 
0. Substitution of this R into E:q. 16 yields: 

Operating on Eq. 19 with differential operator (D + p ) ,  solving the re- 
sulting differential equation, and using the normalizing condition J ,“=o 
G(dz) = 1 (or proceeding as in Example 1 of Ref. 7) result in the following 
solution: 

g ( c )  = exp ( - p c ) ( p ~ ) ( * / ~ e - ] )  p / U A / K e )  c > 0 (Eq. 20) 

where F denotes the gamma function. This result was obtained previously 
by several investigators (8, 10). In this example, Eq. 17 becomes c = 
1.44t1/2~k/p =-1.44t1/2~ F”D”I(VT”) as in Eq. 18. This relation expresses 
the fact that  C is exactly the same as the classical steady-state average 
concentration in Eq. 9 or its generalization in Eq. 10d, if the latter limits 
exist. 

DISCUSSION 

The steady-state probability distribution function of drug concen- 
tration and its average always exist and have been calculated under the 
assumptions that dose administrations occur in a Poisson process, frac- 
tional absorptions and dose amounts are independent random variables, 
the common probability distribution of the resulting drug concentration 
increases a t  dose times is known, and elimination is first order. The 
probabilistic approach presented might be used to predict the percentage 
of the time that a patient’s drug concentration will be below or above any 
level in the steady state. Imprecise knowledge of the deterministic se- 
quences of doses, dosage intervals, and the resulting limiting behavior 

of the concentration in the compartment is quantified by exact knowledge 
of the steady-state probability distribution functian. 

Using classical theory, one simply predicts a patient’s minimum, 
maximum, or average drug concentration; in addition. i t  is assumed that 
the dosage intervals and absorption characteristics are precisely known 
constants. In classical theory, one can predict, for example, that  if a pa- 
tient takes 500 mg of procainamide every 4 hr, his or her serum level will 
‘‘likely’’ be therapeutic because these constants are rarely known exactly. 
It would be more informative and useful to know that if the patient takes 
the drug approximately every 4 hr and if drug absorption is subject to 
chance variations, then the serum will contain an established therapeutic 
concentration 95% of the time. 

The latter type of prediction might allow more rational therapy with 
drugs taken by ambulatory patients for which the therapeutic effect is 
close to toxicity or for which it is essential to maintain a therapeutic serum 
level. Digoxin, antiarrhythmics, anticonvulsants, certain antibiotics, 
antineoplastics, aminophylline, salicylates in the therapy of rheumatic 
disorders, antihypertensives, and corticosteroids are examples of medi- 
cations belonging to this class. The particular stochastic analysis pre- 
sented here may be directly applicable to some of these agents, particu- 
larly those with relatively rapid absorption and first-order elimination 
kinetics. 

Similarly, the stochastic approach can be used to predict caffeine levels 
in coffee and tea drinkers since these beverages usually are imbibed a t  
random intervals and by sipping random amounts. Carbon monoxide and 
nicotine levels in tobacco users and ethanol levels in partygoers might 
be predicted in the same manner. The exponential dam described by Eq. 
19 might be a good model for these situations, and Eq. 20 then would be 
an exact analytical solution for the steady-state probability distribution 
of the serum concentration. The dosage rate, A, and the average increase 
in concentration, Up,  would have to be determined experimentally. 

Extension of the present analysis to include first-order absorption 
would make the probabilistic technique applicable to a broader class of 
drugs. Moreover, development of similar queueing theoretical methods 
for multicompartment models with more general dosing regimens is of 
interest. 
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